
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Schedule of Topics
26 lectures: 2 midterms, 1 intro lecture, so 23 lectures
Approximately 8 lectures = 1 month for each major area:
o 8 lectures (2 – 9) for Introduction to Functional Programming in Haskell, followed by midterm 1 (lecture slot 10)
o 8 lectures (11 – 18) for Interpreters: Implementation of Functional Programming Languages, plus further development of

Haskell, particularly monads and parsing, followed by midterm 2 (lecture slot 19)
o 7 lectures (20 – 26) for Compilers: Implementation of Imperative Programming Languages.

Abstract

Practical

10 19 261Lectures:

Algebraic (1st order) vs Functional
(higher-order) thinking.

Bare-bones
Haskell

Basic Haskell: Types,
Classes, features for
HO/ List Programming

Advanced Haskell:
Monads

Introduction to Functional Programming in
Haskell

Implementation of Functional
Programming Languages -- Interpretation

Implementation of Imperative
Programming Languages -- Compilation

Term Rewriting, Matching,
Unification, Lambda Calculus Attribute Grammars

Context-Free
Grammars, Parse
Trees, Derivations.
(Regular Languages
and DFAs??)

Evaluation Order,
Management of
Environments

Building an interpreter
for Mini-Haskell

Building a compiler for
Mini-C

Parsing in Haskell

Recursive, Higher-
Order, List-based
Programming

Implementation of
various language
features.

Intermediate code,
machine organization,
& assembly language.

Translation templates
for various language
features.

What is a Programming Language?

A Programming Language is defined by
² Syntax – The rules for putting together symbols (e.g., Unicode) to form expressions,

statements, procedures, functions, programs, etc. It describes legal ways of specifying
computations.

² Semantics – What the syntax means in a particular model of computation. This can
be defined abstractly, but is implemented by an algorithm + data structures (examples:
Python interpreter or C compiler).

What is a Programming Language?
Modern digital computers are based on the Von Neumman Architecture of 1945:

Execution Cycle:
1. Read next instruction and data from

memory;
2. Process the data according to the

instruction in the ALU;
3. Write the result to memory;
4. Go to 1

An imperative language sticks close to this model, and the semantics is all
about what happens in the memory. It therefore emphasizes statements
which have an effect on memory.

The semantics of the following loop in C is the incremental changes to the
variables i and total that represent locations in memory:

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

GCC
0

(i):
(total):

Imperative Programming Languages

An imperative language sticks close to this model, and the semantics is all
about what happens in the memory. It therefore emphasizes statements
which have an effect on memory.

The semantics of the following loop in C is the incremental changes to the
variables i and total that represent locations in memory:

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

GCC
0

(i):
(total):

1

Imperative Programming Languages

An imperative language sticks close to this model, and the semantics is all
about what happens in the memory. It therefore emphasizes statements
which have an effect on memory.

The semantics of the following loop in C is the incremental changes to the
variables i and total that represent locations in memory:

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

GCC
1

(i):
(total):

1

Imperative Programming Languages

An imperative language sticks close to this model, and the semantics is all
about what happens in the memory. It therefore emphasizes statements
which have an effect on memory.

The semantics of the following loop in C is the incremental changes to the
variables i and total that represent locations in memory:

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

GCC
1

(i):
(total):

2

Imperative Programming Languages

An imperative language sticks close to this model, and the semantics is all
about what happens in the memory. It therefore emphasizes statements
which have an effect on memory.

The semantics of the following loop in C is the incremental changes to the
variables i and total that represent locations in memory:

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

GCC
55

(i):
(total):

11

Imperative Programming Languages

In programming language theory (and in this course) the memory, as a
whole, and in whatever form and technology it involves is called the state, so
just remember:

State =def All the data stored in memory
as in “state of the computation” and “statement.” Therefore, the meaning of
an imperative language is the sequence of state transitions that the
statements in the language produce.
Such a process is therefore called stateful.
The paradigmatic programming language feature
which affects state is the assignment statement:

x = 4 * y + 1;

(End of Digression!)

Digression on Terminology:

Compare: Context Switch

Ø Memory is complicated (registers, status bits, caches, RAM, run-time stack, …) and
does not always correspond in a natural way to program structure.

Ø Mentally keeping track of dozens or 100’s of variables is difficult.
Ø Debuggers (Eclipse, GDB) help, but are very complicated (many people just use print

statements to print out all relevant variables)
Ø It feels more like accounting than mathematics!

What’s Wrong with the Imperative (Stateful) Paradigm?

Let us consider: what is the essence of mathematical reasoning, for example
in the case of ordinary algebra?

Example:

(3 + 4) * (5 – 2)

=> 7 * (5 – 2)

=> 7 * 3

=> 21

Note:

There are no variables
keeping track of the state.

The computation rewrites one
term to another using the
basic definitions of + and *.

How to eliminate or at least control the notion of state?

Example 2: Prove the following equivalence in Boolean Logic:

Proof (using the distributive law):

Note:

There are no variables
keeping track of the state.

The proof rewrites one term
to another using axioms (e.g.,
the distributive law).

Functional programming is a style of programming in which the
fundamental method of computation is applying a function to arguments; a
functional programming language is one that supports and encourages the
functional style.
It almost always leads to simpler programs in which you can think like a
mathematician, not an accountant!

C (imperative): Haskell (functional):

Functional Programming Languages

/* Add nums 1 to 10 */

total = 0;

for (i=1; i£10; ++i)

total=total+i;

sum [1 .. 10]

In essence, functional programming is stateless, because it avoids storing
data in variables, and the role of memory is hidden from the programmer.
The general term for this property is Referential Transparency:

“Referential transparency and referential opacity are properties of parts

of computer programs. An expression is called referentially transparent if it can

be replaced with its corresponding value without changing the program's

behavior. This requires that the expression is pure, that is to say the expression

value must be the same for the same inputs and its evaluation must have no side

effects. An expression that is not referentially transparent is called referentially

opaque.” - Wikipedia

Functional Programming Languages

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Expression_(programming)
https://en.wikipedia.org/wiki/Rewriting
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Side_effect_(computer_science)

“In mathematics all function applications are referentially transparent, by the

definition of what constitutes a mathematical function. The importance of

referential transparency is that it allows the programmer and the compiler to

reason about program behavior as a rewrite system. This can help in

proving correctness, simplifying an algorithm, assisting in modifying code without

breaking it, or optimizing code by means of memoization, common

subexpression elimination, lazy evaluation, or parallelization.”

Functional Programming Languages

Rq is NOT referentially
transparent, due to the global
variable:

What is value of

rq(5) ? rq(1) * rq(2) ?

rt(5) ? rt(1) * rt(2) ?

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Transparency_(human-computer_interaction)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Rewrite_system
https://en.wikipedia.org/wiki/Correctness_(computer_science)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Common_subexpression_elimination
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Parallelization

Functional programming
languages have been developed
in parallel with imperative
languages since the 1950’s.
Functional programming has
been supported by many
languages (e.g., Python,
Javascript).

Functional Programming Languages

You are here

